A multiple-choice quiz
by rodney_indy.
Estimated time: 5 mins.

Scroll down to the bottom for the answer key.

Most Recent Scores

Sep 28 2023
:
Guest 84: Sep 27 2023 : Guest 111: 0/10

Sep 19 2023 : Guest 120: 4/10

Sep 07 2023 : Guest 199: 5/10

Aug 20 2023 : Guest 110: 8/10

Aug 19 2023 : Guest 130: 1/10

Aug 17 2023 : Guest 72: 1/10

Aug 14 2023 : Guest 120: 0/10

Aug 06 2023 : Guest 86:

Score Distribution

Quiz Answer Key and Fun Facts

Answer:
**1/26**

There are four kings in the deck - 2 are red and 2 are black. So the probability that a red king was selected is 2/52 = 1/26.

There are four kings in the deck - 2 are red and 2 are black. So the probability that a red king was selected is 2/52 = 1/26.

Answer:
**7/13**

Of the 52 cards in the deck, 26 are red, 4 are kings, and 2 are red kings. Hence the number of cards that are red or are a king are 26 + 4 - 2 = 28. We subtract 2 since the 2 red kings are being counted twice. So the probability that a red card or a king was selected is 28/52 = 7/13.

Of the 52 cards in the deck, 26 are red, 4 are kings, and 2 are red kings. Hence the number of cards that are red or are a king are 26 + 4 - 2 = 28. We subtract 2 since the 2 red kings are being counted twice. So the probability that a red card or a king was selected is 28/52 = 7/13.

Answer:
**1/2**

This is a conditional probability question. We are given that a king was selected. There are 4 kings in the deck. Of the 4 kings, 2 of them are red. So the probability that a red card was selected given that a king was selected is 2/4 = 1/2.

This is a conditional probability question. We are given that a king was selected. There are 4 kings in the deck. Of the 4 kings, 2 of them are red. So the probability that a red card was selected given that a king was selected is 2/4 = 1/2.

Answer:
**1/13**

This is a conditional probability question. We are given that a red card was selected. There are 26 red cards in the deck. Of the 26 red cards, 2 of them are kings. So the probability that a king was selected given that a red card was selected is 2/26 = 1/13.

This is a conditional probability question. We are given that a red card was selected. There are 26 red cards in the deck. Of the 26 red cards, 2 of them are kings. So the probability that a king was selected given that a red card was selected is 2/26 = 1/13.

Answer:
**1/48**

This is a conditional probability question. We are given that a king was not selected. There are 48 cards in the deck that are not kings. Of the 48 cards that aren't kings, 1 of them is the queen of hearts. So the probability that the queen of hearts was selected given that a king was not selected is 1/48.

This is a conditional probability question. We are given that a king was not selected. There are 48 cards in the deck that are not kings. Of the 48 cards that aren't kings, 1 of them is the queen of hearts. So the probability that the queen of hearts was selected given that a king was not selected is 1/48.

Answer:
**1/17**

This is a conditional probability question. We are given that the first card is an ace. There are 51 possibilities for the second card, 3 of which are aces (we are given the first card was an ace). So the probability that the second card is an ace given that the first card is an ace is 3/51 = 1/17.

This is a conditional probability question. We are given that the first card is an ace. There are 51 possibilities for the second card, 3 of which are aces (we are given the first card was an ace). So the probability that the second card is an ace given that the first card is an ace is 3/51 = 1/17.

Answer:
**47/51**

This is a conditional probability question. We are given that the first card is not an ace. There are 4 aces in the deck, so there are 48 cards that are not aces. After the first card is drawn, there are 51 cards left in the deck. Among those 51 cards, 47 are not aces. Hence the probability is 47/51.

This is a conditional probability question. We are given that the first card is not an ace. There are 4 aces in the deck, so there are 48 cards that are not aces. After the first card is drawn, there are 51 cards left in the deck. Among those 51 cards, 47 are not aces. Hence the probability is 47/51.

Answer:
**25/102**

There are 26 red cards in the deck. So the probability that the first card is red is 26/52 = 1/2. The probability that the second card is red given that the first card is red is 25/51, since there are 25 red cards left out of the remaining 51 cards. So the probability that both cards are red is (1/2) * (25/51) = 25/102.

Another solution: The sample space consists of C(52,2) = 52*51/2 = 26*51 different two card hands. The number of ways we can select 2 red cards from 26 red cards is C(26,2) = 26*25/2 = 13*25. So the probability is (13*25)/(26*51) = 25/102.

There are 26 red cards in the deck. So the probability that the first card is red is 26/52 = 1/2. The probability that the second card is red given that the first card is red is 25/51, since there are 25 red cards left out of the remaining 51 cards. So the probability that both cards are red is (1/2) * (25/51) = 25/102.

Another solution: The sample space consists of C(52,2) = 52*51/2 = 26*51 different two card hands. The number of ways we can select 2 red cards from 26 red cards is C(26,2) = 26*25/2 = 13*25. So the probability is (13*25)/(26*51) = 25/102.

Answer:
**188/221**

There are 48 cards in the deck that are not aces. The probability that the first card selected is not an ace is 48/52 = 12/13. Since the first card was not an ace, there are 47 cards that are not aces among the remaining 51 cards in the deck. So the probability that the second card is not an ace given that the first card is not an ace is 47/51. Therefore, the probability that both cards are not aces is (12/13)*(47/51) = 188/221.

Another solution: The sample space consists of C(52,2) = 52*51/2 = 26*51 different two card hands. There are 48 cards in the deck that are not aces, we can select two cards that are not aces from the 48 that are not aces in C(48,2) = 48*47/2 = 24*47 different ways. Hence the probability is (24*47)/(26*51) = (4*47)/(13*17) = 188/221.

There are 48 cards in the deck that are not aces. The probability that the first card selected is not an ace is 48/52 = 12/13. Since the first card was not an ace, there are 47 cards that are not aces among the remaining 51 cards in the deck. So the probability that the second card is not an ace given that the first card is not an ace is 47/51. Therefore, the probability that both cards are not aces is (12/13)*(47/51) = 188/221.

Another solution: The sample space consists of C(52,2) = 52*51/2 = 26*51 different two card hands. There are 48 cards in the deck that are not aces, we can select two cards that are not aces from the 48 that are not aces in C(48,2) = 48*47/2 = 24*47 different ways. Hence the probability is (24*47)/(26*51) = (4*47)/(13*17) = 188/221.

Answer:
**1/13**

Let E be the event "the first card is a club." Let F be the event "the second card is an ace." By the formula for conditional probability,

Pr(F|E) = Pr(F intersect E)/Pr(E).

The probability in the denominator is the easy one: 13 of the 52 cards in the deck are clubs, so Pr(E) = 13/52. We need to compute Pr(F intersect E). Note that there are two ways the first card could be a club and the second card could be an ace:

Case 1: The first card is the ace of clubs and the second card is not the ace of clubs, which has probability (1/52)*(3/51)=3/(52*51).

Case 2: The first card is a club other than the ace of clubs and the second card is an ace, which has probability (12/52)*(4/51)=48/(52*51).

This means the probability of F intersect E is just the sum of these probabilities, which is 51/(52*51) = 1/52. So by the formula for conditional probability, Pr(F|E)=Pr(F intersect E)/Pr(E)=(1/52)/(13/52)=1/13.

I hope you enjoyed this quiz! Thanks for playing!

Let E be the event "the first card is a club." Let F be the event "the second card is an ace." By the formula for conditional probability,

Pr(F|E) = Pr(F intersect E)/Pr(E).

The probability in the denominator is the easy one: 13 of the 52 cards in the deck are clubs, so Pr(E) = 13/52. We need to compute Pr(F intersect E). Note that there are two ways the first card could be a club and the second card could be an ace:

Case 1: The first card is the ace of clubs and the second card is not the ace of clubs, which has probability (1/52)*(3/51)=3/(52*51).

Case 2: The first card is a club other than the ace of clubs and the second card is an ace, which has probability (12/52)*(4/51)=48/(52*51).

This means the probability of F intersect E is just the sum of these probabilities, which is 51/(52*51) = 1/52. So by the formula for conditional probability, Pr(F|E)=Pr(F intersect E)/Pr(E)=(1/52)/(13/52)=1/13.

I hope you enjoyed this quiz! Thanks for playing!

This quiz was reviewed by FunTrivia editor crisw before going online.

Any errors found in FunTrivia content are routinely corrected through our feedback system.

Related Quizzes

1. **Probability of Answering This Quiz Correctly** Average

2.**Statistics 101** Tough

3.**Practical Probability** Tough

4.**Stat's Fantastic!** Average

5.**Dice Probabilities** Tough

6.**Mean, Mode and Median** Average

7.**Theoretical Basic Probability** Tough

8.**Simple Statistics** Average

9.**Basic Probability Theory** Tough

10.**A Matter of Probability...** Tough

11.**Roll 'em Up** Tough

12.**AP Statistics Study Guide** Average

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Referenced Topics

Science
Math
The Color Black
Statistics and Probability
Other Destinations

Explore Other Quizzes by Go to

More

FunTrivia