Scroll down to the bottom for the answer key.

Most Recent Scores

Sep 24 2023
:
briarwoodrose: Sep 23 2023 : AdamM7:

Sep 09 2023 : catnlib: 1/10

Score Distribution

Quiz Answer Key and Fun Facts

Answer:
**c**

A quadratic in standard form is written ax^2+bx+c. Therefore, in this problem, the coefficients are a=4, b=7, and c=-2.

A quadratic in standard form is written ax^2+bx+c. Therefore, in this problem, the coefficients are a=4, b=7, and c=-2.

Answer:
**2a**

The quadratic formula is written as: x equals -b plus or minus the square root of b^2-4ac all over 2a. This formula is derived by completing the square of the standard form of a quadratic equation, ax^2+bx+c=0.

The quadratic formula is written as: x equals -b plus or minus the square root of b^2-4ac all over 2a. This formula is derived by completing the square of the standard form of a quadratic equation, ax^2+bx+c=0.

Answer:
**(x-3)(x-3)=0**

It is always easier to try to factor a problem before using the quadratic formula. After factoring this polynomial, you get (x-3)(x-3)=0, then you solve for x. The solution will be 3. If you use the quadratic formula, plugging in 1 for a, -6 for b, and 9 for c, you will ultimately come up with the same answer.

It is always easier to try to factor a problem before using the quadratic formula. After factoring this polynomial, you get (x-3)(x-3)=0, then you solve for x. The solution will be 3. If you use the quadratic formula, plugging in 1 for a, -6 for b, and 9 for c, you will ultimately come up with the same answer.

Answer:
**x^2-x-12**

When multiplying two factors together you use the FOIL method. F stands for the First terms, O stands for the Outside terms, I stands for the inside terms, and L stands for the Last terms. This is the order in which you should multiply the terms of two factors. You then add these four products together to get the final, expanded expression.

When multiplying two factors together you use the FOIL method. F stands for the First terms, O stands for the Outside terms, I stands for the inside terms, and L stands for the Last terms. This is the order in which you should multiply the terms of two factors. You then add these four products together to get the final, expanded expression.

Answer:
**(-2+ square root 6, -2- square root 6)**

For this problem, the coefficients are a=1, b=4, and c=-2. When you plug this into the quadratic formula, you get: -4 plus or minus the square root of 4^2-4*1*-2, all over 2*1. After solving this and simplifying the result, you are left with -2 plus or minus the square root of 6. Therefore, the answers are -2+ square root 6 and -2- square root 6.

For this problem, the coefficients are a=1, b=4, and c=-2. When you plug this into the quadratic formula, you get: -4 plus or minus the square root of 4^2-4*1*-2, all over 2*1. After solving this and simplifying the result, you are left with -2 plus or minus the square root of 6. Therefore, the answers are -2+ square root 6 and -2- square root 6.

Answer:
**x^2-3x-10=0**

In order to find the simplest equation that will yield these two solutions, use the reverse process used when solving a quadratic. Make the solutions into the two binomial factors, (x+2)(x-5). FOIL these two factors to multiply them together, and you will get x^2-3x-10. So, your equation is x^2-3x-10=0.

In order to find the simplest equation that will yield these two solutions, use the reverse process used when solving a quadratic. Make the solutions into the two binomial factors, (x+2)(x-5). FOIL these two factors to multiply them together, and you will get x^2-3x-10. So, your equation is x^2-3x-10=0.

Answer:
**False **

While it is much easier to simply factor the polynomial into (x-4)(x+1)=0, it is still possible to use the quadratic formula. Most people choose not to use the quadratic formula in such cases, however, because it is more tedious to plug the numbers into the formula. However, if you truly enjoy math, by all means, you can use the quadratic formula every single time!

While it is much easier to simply factor the polynomial into (x-4)(x+1)=0, it is still possible to use the quadratic formula. Most people choose not to use the quadratic formula in such cases, however, because it is more tedious to plug the numbers into the formula. However, if you truly enjoy math, by all means, you can use the quadratic formula every single time!

Answer:
**It should be equal to one**

When preparing to complete the square, you must firstly make sure that your equation is in standard quadratic form with the right-hand side set equal to zero. Then, always make sure that the coefficient of the first term is positive one. Otherwise, your calculations will be incorrect.

When preparing to complete the square, you must firstly make sure that your equation is in standard quadratic form with the right-hand side set equal to zero. Then, always make sure that the coefficient of the first term is positive one. Otherwise, your calculations will be incorrect.

Answer:
**Square it**

You must divide the coefficient of the second term in half and then square it. After that, you can add it to the end of your polynomial. After completing the square, you should have an equation with two of the same factors. For instance, for the polynomial x^2+2x+1, the two factors are (x+1)(x+1), or (x+1)^2. Therefore it is a perfect-square trinomial.

You must divide the coefficient of the second term in half and then square it. After that, you can add it to the end of your polynomial. After completing the square, you should have an equation with two of the same factors. For instance, for the polynomial x^2+2x+1, the two factors are (x+1)(x+1), or (x+1)^2. Therefore it is a perfect-square trinomial.

Answer:
**25**

The quadratic equation is in standard form and the first coefficient is positive and is equal to one, so we are ready to begin the problem. Take the coefficient of the second term, 10. Divide it in half (10/2=5), then square the result (5^2=25). Your answer is 25.

The quadratic equation is in standard form and the first coefficient is positive and is equal to one, so we are ready to begin the problem. Take the coefficient of the second term, 10. Divide it in half (10/2=5), then square the result (5^2=25). Your answer is 25.

This quiz was reviewed by FunTrivia editor CellarDoor before going online.

Any errors found in FunTrivia content are routinely corrected through our feedback system.

Related Quizzes

1. **The Matrix** Average

2.**An Adventure in Abstract Algebra** Very Difficult

3.**Basic Math or Algebra?** Tough

4.**Algebra Wonderland!** Tough

5.**Questions on Quadratics** Average

6.**Linear Equations in One Variable** Average

7.**Polynomial Factoring Madness!** Average

8.**Algebra Terms** Tough

9.**Matrices** Tough

10.**My Good Friend Slope** Average

11.**Radical Radicals** Average

12.**Enter the Matrix** Tough

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Referenced Topics

People
Science
Math
Algebra
Other Destinations

Explore Other Quizzes by Go to

More

FunTrivia